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Abstract

For an isotropic circular plate with constant thickness and free edges, its fundamental vibration mode takes the form of

a twisting mode with two nodal diameters, i.e. n ¼ 2. In certain applications, it may be necessary to have an axisymmetric

shape for the fundamental vibration mode (i.e. mode shape with no nodal diameter, n ¼ 0). In this paper, we show that

such an axisymmetric vibration mode can be realized by increasing the bending rigidity of the outer rim of the circular

plate by using a larger thickness or by using a material with a larger Young’s modulus or both. We also determine the

critical flexural rigidity of the outer rim that will trigger this vibration mode change from n ¼ 2 type to n ¼ 0 type for a

given rim width. The ability to alter the mode shape of circular plates with free edges has useful applications in sensing and

actuating devices and large pontoon-type floating circular structures.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Plated structures are employed in many engineering and industrial applications. For example,
piezoelectric plates are used in energy harvesting [1], silicon plates for sensing [2–4] and biological analysis
[5], pontoon-type very large floating structures [6–8]. For analysis of these aforementioned
example applications, the structures may be modeled as plates with free edges. Considering an isotropic
circular plate with uniform thickness and free edges, the fundamental mode of vibration takes on a
twisting mode with two nodal diameters (i.e. n ¼ 2). However, the axisymmetric vibration mode (i.e. n ¼ 0) is
often desired as the fundamental mode for certain applications. For example, larger responses can be
achieved for circular piezoelectric sensors with an axisymmetric mode shape [9]. Therefore, the problem
arises on how one can design a circular free-edge plate that has an axisymmetric fundamental mode of
vibration (i.e. n ¼ 0). By noting that the fundamental mode of vibration is axisymmetric for circular plates
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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with clamped edges, we propose to solve the aforementioned problem by using a stepped circular
where its outer annular sub-plate (or outer rim) has a larger bending rigidity as compared with the
bending rigidity of its inner circular sub-plate. Such a plate design simulates the case of an inner circular
sub-plate having a clamped-type boundary condition due to the relatively larger bending rigidity of the
outer rim.

Extensive studies have been carried out for the vibration of circular plates with varying thickness. Many of
the studies have been well documented in the excellent review papers of Leissa [10–16]. The vibration problems
of circular and annular plates with non-linear thickness variations have been solved by approximate solution
methods, such as the Rayleigh–Ritz method [17–21], perturbation method [22], the generalized differential
quadrature rule (GDQR) [23], as well as by analytical methods [24–27]. The vibration problem of stepped
circular plates, based on classical plate theory and improved Mindlin plate theory, has also been studied by
numerous investigators [8,28–31].

The aim of the paper is to show that we can modify the fundamental mode of the stepped circular
plate from a twisting mode shape to an axisymmetric mode shape by adjusting the rigidity of the edge
annular plate. This has an important implication for the design of circular plated structures with
free edges. The Mindlin plate theory is applied to describe the dynamic behavior of the circular
stepped plate in order to allow for the significant effect of transverse shear deformation in the thickened
portion of the plate. The vibration problem is solved analytically. Comparison studies with 3D finite
element model (FEM) are carried out to provide an independent check on the analytical results.
Extensive exact vibration frequencies are presented for circular stepped plates with free edge. The influences
of stepped thickness and stepped material properties on transforming the fundamental mode shape are
highlighted.
2. Mathematical modelling

Consider a stepped circular plate of radius a, stepped thickness at z ¼ r/a ¼ b, Young’s modulus E1 and E2,
mass density r and Poisson’s ratio n. The plate edge is completely free. Following the method proposed by
Hang et al. [28], the stepped circular plate is decomposed into two sub-plates where the continuity conditions
are satisfied at the stepped boundary z ¼ b as shown in Fig. 1. The outer annular sub-plate 1 has a constant
thickness t1 ¼ h1/a while the inner circular sub-plate 2 has a constant thickness t2 ¼ h2/a. The problem at
hand is to determine the fundamental frequency and mode shape of the freely vibrating, stepped, circular
plates for various combinations of stepped designs.

In order to allow for the effects of transverse shear deformation and rotary inertia, especially when having a
relatively thickened portion in stepped plates, it is proposed that the Mindlin plate theory be adopted instead
of the commonly used classical thin plate theory. Following the work by Mindlin and Deresiewicz [32,33], the
rotations cr, cy and the transverse displacement w (normalized by the radius a) may be expressed as functions
of three potentials Z1, Z2 and H in the following manner:

cr ¼ ðs1 � 1Þ
qZ1
qz
þ ðs2 � 1Þ

qZ2
qz
þ

1

z
qH

qy
,

cy ¼ ðs1 � 1Þ
qZ1
zqy
þ ðs2 � 1Þ

qZ2
zqy
�

qH

qz
,

w ¼ Z1 þ Z2. (1)

In view of the modes of vibration of interest in the present case (i.e. n ¼ 0 and n ¼ 2), three potentials Z1, Z2
and H can be expressed as

Z1 ¼ ½A1Jnðd1rÞ þ B1Y nðd1rÞ� cos ny,

Z2 ¼ ½A2Inðd2rÞ þ B2Knðd2rÞ� cos ny,

H ¼ ½A3InðorÞ þ B3KnðorÞ� sin ny, (2)
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Fig. 1. Stepped circular plate with free edges.
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where J, Y are Bessel functions of the first and second kind, respectively; I, K are the modified Bessel functions
of the first and second kind, respectively; and the other parameters are

s1;s2 ¼ ðd
2
2; d

2
1ÞðRl2 � S�1Þ�1,

d21; d
2
2 ¼

d40
2

Rþ S � ðR� SÞ2 þ
4

l2

� �1=2( )
,

d23 ¼
2ðRd40 � S�1Þ

1� n
; l2 ¼

a4rp2h

D
,

R ¼
t2

12
; S ¼

t2

6k2ð1� nÞ
, (3)

in which k2 is the shear correction factor, p the natural circular frequency, D ¼ Eh3/[12(1�n2)] the flexural
rigidity, and t the non-dimensional thickness of circular plate normalized by the radius a. The plate stress
resultants are given in terms of the plate displacements by
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For the vibrations of a plate with free edges, the natural boundary conditions are

Mr ¼ 0; Mry ¼ 0; Qr ¼ 0 at z ¼ 1. (5)

The continuity conditions at the stepped boundary are given by

cr1 ¼ cr2; cy1 ¼ cy2; w1 ¼ w2

Mr1 ¼Mr2; My1 ¼My2; Qr1 ¼ Qr2

)
at z ¼ b, (6)

where subscript 1 denotes the quantities belonging to the outer annular sub-plate and subscript 2 for the inner
circular sub-plate 2. By substituting the displacements Eq. (1) and the stress resultants Eq. (4) into Eqs. (5)
and (6), a set of homogeneous system of equations is obtained and the equations may be written as

½K �9�9fCg9�1 ¼ f0g9�1, (7)

where {C} is the vector of nine unknown coefficients. The elements of the matrix [K] for asymmetric vibration
mode (n 6¼0) and axisymmetric vibration mode (n ¼ 0) are given in the paper by Ref. [28]. The frequency
parameter l of the entire plate is evaluated by setting the determinant of [K] to zero and then solving the
characteristic equation by a root finding algorithm, such as the bisection method [34].

3. Results and discussions

We consider various plate designs that involve changing the stepped thickness ratio a ¼ t1/t2, and the
stepped modulus of elasticity b ¼ E1/E2. The stepped location b is kept at 0.8, a value that is relatively large so
that a more sensitive response of the inner sub-plate 2 may be realized when the plate is used as a sensor. The
constant thickness t2 ¼ 0.005 is prescribed for the inner circular sub-plate 2 while the bending rigidity of the
outer annular sub-plate 1 is changed. The Poisson ratio n ¼ 0.3 and Mindlin’s correction factor k2 ¼ p2/12 are
used in all calculations.

The variations of the frequencies for the two vibration modes (n ¼ 0 and 2) of circular stepped plates with
respect to the thickness ratio a are shown in Fig. 3. The thickness t1 of the outer annular sub-plate 1 varies
from 0.005 to 0.06m, and hence the stepped thickness ratio a varies from 1 to 12. It should be noted that the
radius to thickness ratio of sub-plate 2 is 140 while the radius to thickness ratio of sub-plate 1 varies from 60 to
5. Both radius to thickness ratios are within the assumptions of the Mindlin plate theory. It is seen that when
the stepped thickness ratio a ¼ 1, the value of frequency parameter l ¼ 9.00 with n ¼ 0 vis-à-vis the frequency
parameter l ¼ 5.35 with n ¼ 2. Therefore, the fundamental mode is a twisting mode shape with n ¼ 2 instead
of an axisymmetric mode shape with n ¼ 0. For stepped thickness ratio a varying from 1 to 5.64, the mode
shape is a twisting mode shape. For a45.64, the mode shape becomes axisymmetric. Therefore, there is a
critical value for the stepped thickness ratio a in which the mode shape could be either twisting-type or
axisymmetric-type.

Another observation is that the variation of the stepped thickness ratio a has a larger effect on the frequency
value associated with n ¼ 0 than the frequency value associated with n ¼ 2. For example, at the beginning
where a is near to 1, the rate of increase in the frequency values with n ¼ 2 and n ¼ 0 are similar whereas for
the case when a becomes large (say 5), the rate of increase in the frequency associated with n ¼ 0 becomes
slower as compared with that of frequency with n ¼ 2. This frequency trends result in having an intersection
point between the curves belonging to frequencies associated with n ¼ 0 and n ¼ 2.

To provide an independent check on the aforementioned analytical results, we analyzed the stepped circular
plates by using ABAQUS 6.4. The finite element meshes of the circular plates with stepped thickness and
stepped Young’s modulus are shown in Fig. 2. The circular plate is modeled by using 20-node solid elements
(C3D20R). Two mesh designs are considered to show the convergence of results. For the circular plate with
stepped thickness, the total numbers of elements for these two meshes are 1920 and 2360, and the
corresponding numbers of nodes are 10,645 and 13,075, respectively. For the circular plate with stepped
Young’s modulus, the total numbers of elements for the two meshes are 793 and 1656 and the corresponding
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Fig. 2. Finite element discretization of circular plates with (a) stepped thickness (1920 elements) and (b) stepped Young’s modulus (793

elements).
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Fig. 3. Variations of frequency parameter l (associated with n ¼ 0 and n ¼ 2) with respect to stepped thickness ratio a.
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numbers of nodes are 5774 and 11,910, respectively. The finer mesh design will suffice in producing converged
results since the two mesh designs yield vibration frequencies that are within 0.1% of each other.

A comparison study between the analytical and finite element results is shown in Fig. 3. Three stepped
thickness ratios, i.e. a ¼ 4, 6, and 8, are considered. It can be seen that the vibration frequencies are in good
agreement (less than 1% difference), thereby verifying the correctness of the analytical results. The mode
shapes for plates with a ¼ 4, 8 are shown in Fig. 4. It is clearly seen that the vibration modes have changed
from a twisting mode n ¼ 2 for a ¼ 4 to an axisymmetric mode n ¼ 0 for a ¼ 8, confirming that the
fundamental mode of the circular stepped plates can be altered by adjusting the rigidity of the outer rim of
the plate.

The effect of having stepped Young’s modulus on the variations of frequency associated with the twisting
mode and the axisymmetric mode are shown in Fig. 5. The Young’s modulus ratio b is varied from 1 to 60.
A comparison between the analytical and finite element results for three stepped Young’s modulus ratios
(i.e. b ¼ 20, 30 and 40) are considered. The frequencies are in good agreement (less than 1% difference) and
these results further verify the correctness of the analytical solutions. The critical value of stepped Young’s
modulus ratio where fundamental mode switching occurs is b ¼ 27.33.
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Fig. 4. Mode shape of stepped plate from FEM simulation.
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Fig. 5. Variations of frequency parameter l (associated with n ¼ 0 and n ¼ 2) with respect to stepped Young’s modulus.
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4. Concluding remarks

We have shown that the fundamental mode of a circular free-edge plate may be altered from a twisting mode
to an axisymmetric one by either having a larger thickness for the outer edge or by having a larger Young’s
modulus for the outer edge. Both these methods essentially increase the flexural rigidity of the outer edge of the
plate, creating an artificial ‘‘clamped-typed’’ boundary condition to the inner circular sub-plate. The ability to
modify the mode shape has an important implication for the design of circular plates with free edges.
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